Tetrahedron Letters,Vol.27,No.52,pp 6345-6348,1986 0040-4039/86 \$3.00 + .00 Printed in Great Britain Pergamon Journals Ltd.

SYNTHETIC STUDIES ON (+)-APLASMOMYCIN. 2. STEREOSELECTIVE SYNTHESIS OF COREY'S KEY INTERMEDIATE, A FORMAL TOTAL SYNTHESIS

Tadashi Nakata,^{*} Kunio Saito, and Takeshi Oishi^{*} RIKEN (The Institute of Physical and Chemical Research) Wako-shi, Saitama 351-01, Japan

Abstract: The C-3 \sim C-11 segment 2 of (+)-aplasmomycin was synthesized stereoselectively starting from (+)-pantolactone (4) and the C-3 \sim C-17 segment 3 was synthesized via coupling of 1 and 2.

Having achieved the stereoselective synthesis of the C-12~C-17 segment 1 of (+)-aplasmomycin,¹ we then focused our attention on the synthesis of the C-3 \sim C-11 segment 2, a counterpart leading to a key intermediate 3 in Corey's total synthesis of (+)-aplasmomycin.² The present paper deals with the stereoselective synthesis of 2 based on the synthetic method for 1,3-<u>syn</u>-polyol³ and coupling of 2 and the previously synthesized 1¹ producing 3.

Commercially available (\underline{S})-(+)-pantolactone⁴ (<u>4</u>) was chosen as a suitable starting material, since it contains requisite functionalities at the desired positions. Lactone <u>4</u> was converted into aldehyde <u>5</u> (78% overall yield) following essentially the known procedures (LiAlH₄ reduction, acetonization, and PCC oxidation).⁵ Aldol condensation of <u>5</u> with lithium enolate of <u>t</u>-butyl acetate gave a mixture of β -hydroxy ester <u>6</u> which was subjected to deacetonization-lactonization (c. HCl/aq. MeOH) and silylation (<u>t</u>-BuPh₂SiCl/ imidazole/DMF) providing lactone <u>7</u> in 75% yield (from <u>5</u>). After protection of the hydroxyl group as the ethoxyethyl(EE) ether, <u>7</u> was converted into ketone <u>8</u>

(an epimeric mixture at the C-4 position) in 3 steps: 1) introduction of <u>i</u>propyl propionate (LDA/EtCOO-<u>i</u>-Pr), 2) methoxylation of the resulting hemiacetal and simultaneous deprotection of EE group (CSA/MeOH/CH₂Cl₂), 3) oxidation (PCC/3A-molecular sieves/CH₂Cl₂). Reduction of <u>8</u> with L-Selectride in THF³ at -78° exclusively gave 73(axial)-alcohol <u>9</u>⁶ corresponding to 7,9-<u>syn</u>diol in 87% yield (60% from <u>7</u>). The configuration of the C-7 hydroxyl group of <u>9</u> was assigned as axial based on small coupling constants (J=2.7, 3.7 Hz) between C-6 α , β H and C-7 H. Hydrolysis of <u>9</u> with 1<u>N</u> HCl and successive NaBH₄ reduction afforded acyclic triol <u>10</u> (66%). Lactonization of <u>10</u> with CSA in benzene, acetylation of the remaining alcohols with Ac₂O followed by DBU

a) LiAlH₄/THF; acetone/p-TsOH; PCC/3A-MS/CH₂Cl₂, b) LDA/MeCOO-<u>t</u>-Bu/THF/-78°, c) c. HC1/ aq. MeOH; <u>t</u>-BuPh₂SiCl/imidazole/DMF, d) CH₂=CHOEt/PPTS/CH₂Cl₂; LDA/EtCOO-<u>i</u>-Pr/THF/-78°; CSA/MeOH/CH₂Cl₂; PCC/3A-MS/CH₂Cl₂, e) L-Selectride/THF/-78°, f) 1<u>N</u>-HC1/THF; NaBH₄/MeOH, g) CSA/PhH/30°; Ac₂O/DMAP/pyridine; DBU/PhH, h) DIBAH/PhMe/-78°; PPTS/<u>t</u>-BuOH/CH₂Cl₂; <u>n</u>-Bu₄NF/THF, i) H₂ (1 atm)/5% Rh-Al₂O₃/THF; <u>t</u>-BuPh₂SiCl/imidazole/DMF; <u>n</u>-Bu₄NF/THF, j) KH or NaH/TsCl/DMF/THF

treatment afforded α,β -unsaturated lactone <u>11</u> (72%). Reduction of <u>11</u> with DIBAH and successive treatment with PPTS in <u>t</u>-BuOH-CH₂Cl₂ gave 3 β -<u>t</u>-butoxy acetal <u>12</u> (75%) which was desilylated with <u>n</u>-Bu₄NF giving diol <u>13</u> (94%). Catalytic hydrogenation of <u>13</u> over 5% Rh-Al₂O₃ in THF proceeded stereoselectively from the less hindered α -side.⁷ In order to facilitate the removal of the contaminated C-4 α epimer, the reduction product was again silylated with <u>t</u>-BuPh₂SiCl and subjected to column chromatography on silica gel giving <u>14</u>⁸ (84% from <u>13</u>) along with the C-4 α epimer (6.6%). Desilylation of <u>14</u> with <u>n</u>-Bu₄NF gave diol <u>15</u>⁶ (97%) which on treatment with KH (2.5 equiv) or NaH and TsCl was converted effectively into epoxide <u>16</u> in <u>91</u> % yield.

The additional carbon one-unit corresponding to C-11 position should be introduced to 16. The use of PhSO₂Me for this purpose was presumed to be advantageous since the reaction product possessing active methylene group would be used directly to the condensation with aldehyde 1. However, attack of PhSO₂CH₂Li (2 equiv, <u>n</u>-BuLi/HMPA/THF) to the hindered model epoxide⁹ did not proceed smoothly. After several attempts, addition of BF₃·Et₂O¹⁰ (2 equiv) to the reaction mixture was found to increase the yield dramatically. Thus, using this procedure, 12^6 was obtained from 16 in excellent yield. Treatment of 17 with 1,3-propanedithiol and BF₃·Et₂O and successive disilylation with <u>t</u>-BuMe₂SiOTf gave thioacetal 2^6 (82% from 16). Addition of 1.4 equiv of aldehyde 1 to 2 (<u>n</u>-BuLi/HMPA/THF) followed by benzoylation afforded 18. Conversion of β -benzoyloxy sulfone moiety in 18 into the required <u>E</u>-olefin was successfully achieved by 6% Na-Hg treatment (46% yield from 2) producing (+)-3, the C-3 ~ C-17 segment. 400 MHz ¹H NMR spectral data of (+)-3 were in good accord with those reported by Corey.²

As 3 has already been converted into (+)-aplasmomycin,² the present synthesis of (+)-3 represents a formal total synthesis.

a) $PhSO_2Me/\underline{n}-BuLi/HMPA/BF_3\cdotEt_2O/THF/-78^\circ$, b) $HS(CH_2)_3SH/BF_3\cdotEt_2O/CH_2Cl_2/0^\circ$; TBDMSOTf/2,6-lutidine/CH_2Cl_2, c) $\underline{n}-BuLi/HMPA/THF/-78^\circ$; addition of 1 in THF/-78°; PhCOC1/DMAP/pyridine/ 50-60°, d) 6% Na-Hg/THF/MeOH/-20°

Acknowledgement: The authors are grateful to Professor E. J. Corey (Harvard University) for providing ¹H NMR data of 20.

References and Notes

- 1) T. Nakata, K. Saito, and T. Oishi, <u>Tetrahedron Lett</u>., preceding paper.
- 2) E. J. Corey, B.-C. Pan, D. H. Hua, and D. R. Deardorff, <u>J. Am. Chem. Soc.</u>, <u>104</u>, 6816 (1982); E. J. Corey, D. H. Hua, B.-C. Pan, and S. P. Seitz, <u>ibid</u>., <u>104</u>, 6818 (1982).
- T. Nakata, S. Takao, M. Fukui, T. Tanaka, and T. Oishi, <u>Tetrahedron Lett</u>., 24, 3873 (1983).
- 4) Purchased from Tokyo Kasei Kogyo Co., Ltd.
- 5) T. Matsuo, K. Mori, and M. Matsui, <u>Tetrahedron Lett.</u>, 1979 (1976); R. E. Dolle and K. C. Nicolaou, <u>J. Am. Chem. Soc</u>., 107, 1691 (1935).
- 6) ¹H NMR spectra were taken on a JEOL JNM GX-400 instrument in CDCl₃. 9: NMR δ 2.99 (g, J=7.3 Hz; 4-H), 3.06 (g, J=7.1 Hz; 4-H), 3.30, 3.34 (each s; 5-OMe), 3.32 (m; 7-H). 15: mp 82-84°, NMR δ 0.79 (d, J=6.6 Hz; 4-Me), 4.91 (d, J=3.2 Hz; 3-H), $[\alpha]_D^{20}$ +99.2° (c=2.0, CHCl₃). 17: mp 94-95°, NMR δ 0.77 (d, J=6.6 Hz; 4-Me), 3.75 (dd, J=11.0, 2.4 Hz; 7-H), 4.86 (d, J=2.9 Hz; 3-H), 2: NMR δ 3.36 (dd, J=5.9, 3.9 Hz; 7-H), 3.71 (dd, J=6.6, 3.9 Hz; 9-H), 4.10 (d, J=4.2 Hz; 3-H). 3: NMR δ 3.53 (dd, J=6.6, 3.2 Hz; 7-E), 3.68 (dd, J=6.4, 3.9 Hz; 9-H), 3.89 (m; 16-H), 4.03 (m; 15-H), 4.11 (d, J=4.2 Hz; 3-H), 4.42 (g, J=7.1 Hz; 13-H), 5.63 (dd, J=15.4, 7.1 Hz; 12-H), 5.67 (ddd, J=15.4, 7.6, 4.9 Hz; 11-H), $[\alpha]_D^{20}$ +7.1 (c=0.96, CHCl₃). 20: NMR δ 1.10 (d, J=6.8 Hz; Me), 2.99 (dd, J=4.2, 2.9 Hz; 9-H), 3.28 (dd, J=7.3, 3.4 Hz; 7-H), 4.15 (d, J=3.9 Hz; 3-H), $[\alpha]_D^{25}$ +30.0° (c=0.5, CHCl₃).
- 7) cf. R. H. Schlessinger and M. A. Poss, <u>J. Am. Chem. Soc</u>., <u>104</u>, 357 (1982).
- 8) The stereostructure of 14 was further confirmed by the conversion into Corey's intermediate 20^2 in 5 steps as shown below. ¹H NMR data of the synthetic 20^6 were identical with those of the authentic 20.

a) HS(CH₂)₃SH/BF₃·Et₂O, b) p-TsOH/acetone; DMSO/Ac₂O/AcOH; aq. AcOH; NaH/TsC1/DMF

OBzl

Me Me

i

9) The epoxide i was used in the model experiment.

10) cf. M. Yamaguchi and I. Hirao, <u>Tetrahedron Lett.</u>, 24, 391 (1983); M. J. Eis, J. E. Wrobel, and B. Ganem, <u>J.</u> <u>Am. Chem. Soc.</u>, 106, 3693 (1984); B. Achmatowicz, E. Baranowska, A. R. Daniewski, J. Pankowski, and J. Wicha, <u>Tetrahedron Lett.</u>, 26, 5597 (1985).

(Received in Japan 31 July 1986)